Search This Blog

Monday, October 29, 2007

Identify dark matter !!!!

In the growing catalog of nanoscale technologies, nanowires-tiny rows of conductor or semiconductor atoms-have attracted a great deal of interest for their potential to build unique atomic-scale electronics. But before you can buy some at your local Nano Depot, manufacturers will need efficient, reliable methods to build them in quantity.
The next method of detection is one of indirect observation. Looking out into space, Bertone says, scientists "look for some signal due to interaction of particles amongst themselves."

The strategy set forth in the article belongs to the third approach, which is to build a large detector and wait for a dark matter particle to interact with ordinary matter. "To show the power of this technique, we focused on an experiment called COUPP [Chicagoland Observatory for Underground Particle Physics]" Bertone says. "It is a bubble chamber, much like what has been used before in other fields."

He explains that when a dark matter particle enters the chamber, it releases a tiny amount of energy, and is visible in the form of bubbles. "In case positive detection, the idea is to change the target liquid in the bubble chamber and repeat the experiment. We would measure the rate in two different targets and by crossing the results, we can get the properties of the dark matter particles with better accuracy."

There are technological problems to this setup, Bertone concedes. "If you operate the bubble chamber at the ground level, you get a huge amount of bubbles, as many particles enter and they all interact with the nuclei." To reduce this "background" from ordinary matter, Bertone says that the bubble chamber must be brought deep underground.

"The group of Juan Collar has built a prototype at Fermilab in Chicago, still in its early phase and under development," explains Bertone. He points out that the bubble chamber detector's main advantage is that it can be operated at room temperature. "Most of the time, when looking for tiny signals, it needs to be done at very low temperatures. Being able to do this at room temperature makes things easier and cheaper."

Bertone says that plans to "scale up" the prototype chamber in Chicago are moving forward, along with the other dark matter experiments being attempted around the world. The technique they have proposed can however be applied to any experiment, and can even be used to combine data from different experiments. "We live in a moment of excitement," he continues. "I am eager to see the results from all the dark matter experiments. We could really be about to discover new things."

Technorati :

No comments:

Find here

Home II Large Hadron Cillider News